
An Empirical Study of Developer Discussions on
Low-Code Software Development Challenges

Md Abdullah Al Alamin∗, Sanjay Malakar†, Gias Uddin∗, Sadia Afroz†, Tameem Bin Haider†, Anindya Iqbal†
∗University of Calgary, †Bangladesh University of Engineering and Technology

Abstract—Low-code software development (LCSD) is an
emerging paradigm that combines minimal source code with
interactive graphical interfaces to promote rapid application
development. LCSD aims to democratize application development
to software practitioners with diverse backgrounds. Given that
LCSD is relatively a new paradigm, it is vital to learn about
the challenges developers face during their adoption of LCSD
platforms. The online developer forum, Stack Overflow (SO),
is popular among software developers to ask for solutions to
their technical problems. We observe a growing body of posts
in SO with discussions of LCSD platforms. In this paper, we
present an empirical study of around 5K SO posts (questions
+ accepted answers) that contain discussions of nine popular
LCSD platforms. We apply topic modeling on the posts to
determine the types of topics discussed. We find 13 topics related
to LCSD in SO. The 13 topics are grouped into four categories:
Customization, Platform Adoption, Database Management, and
Third-Party Integration. More than 40% of the questions are
about customization, i.e., developers frequently face challenges
with customizing user interfaces or services offered by LCSD
platforms. The topic “Dynamic Event Handling” under the
“Customization” category is the most popular (in terms of
average view counts per question of the topic) as well as the
most difficult. It means that developers frequently search for
customization solutions such as how to attach dynamic events
to a form in low-code UI, yet most (75.9%) of their questions
remain without an accepted answer. We manually label 900
questions from the posts to determine the prevalence of the
topics’ challenges across LCSD phases. We find that most of
the questions are related to the development phase, and low-code
developers also face challenges with automated testing. Our study
findings offer implications for low-code practitioners, platform
providers, educators, and researchers.

Index Terms—Low-Code, Issue, Challenge, Empirical Study.

I. INTRODUCTION

LCSD is a new paradigm that enables the development of

software applications with minimal hand-coding using visual

programming with graphical interface and model-driven de-

sign. LCSD embodies End User Software Programming [36]

by democratizing application development to software prac-

titioners from diverse backgrounds [17]. By facilitating au-

tomatic code generation, the low-code development tools

allow developing production-ready applications with minimal

coding. It addresses the gap between domain requirement

and developers’ understanding that is a common cause of

delayed development in many applications with complex

business logic. The benefits of using LCSD platforms also

include flexibility and agility, fast development time allowing

quick response to market demands, reduced bug-fixing, lower

deployment effort, and easier maintenance. Hence, the industry

of low-code development is gaining popularity at a rapid pace.

According to Forrester report [47], the LCSD platform market

is expected to be $21 Billon by 2022. According to Gartner

report, by 2024, around 65% of large enterprises will use

LCSD platforms to some extent [61].

To date, there are more than 200 LCSD platforms, offered

by almost all major companies like Google [21] and Sales-

force [49]. Naturally, LCSD has some unique challenges [48].

Wrong choice of LCSD application/platforms may cause a

waste of time and resources. There is also concern about the

security/scalability of LCSD applications [26]. With interests

in LCSD growing, we observe discussions about LCSD plat-

forms are becoming prevalent in online developer forums like

Stack Overflow (SO). SO is a large online technical Q&A

site with around 120 million posts and 12 million registered

users [35]. Several research has been conducted to analyze

SO posts (e.g., big data [7], concurrency [2], blockchain [59],

microservices [9]). However, we are aware of no research

that analyzed LCSD discussions on SO, although such insight

can complement existing LCSD literature – which so far has

mainly used surveys or controlled studies to understand the

needs of low-code practitioners [20, 27, 3, 26].

In this paper, we report an empirical study to understand the

types of challenges and topics in LCSD developer discussions

in SO by analyzing all 4.6K SO posts related to the top nine

LCSD platforms at the time of our analysis (according to

Gartner). We answer three research questions:

RQ1. What types of topics are discussed about LCSD
in SO? Given LCSD is a new paradigm, it is necessary to

learn about the types of topics LCSD practitioners discuss

in a technical Q&A site like SO. Therefore, we apply topic

modeling algorithm LDA [13] on our dataset of 4.6K posts.

We find a total of 13 LCSD topics which are grouped into

four categories: Customization of LCSD UI and Middleware,

LCSD Platform Adoption, LCSD Database Usage, and Third-

Party Integration. A majority of the (40%) questions are asked

about the diverse challenges developers face while attempting

to customize the user interface (UI) or a service/form provided

by an LCSD platform. This is due to the fact that LCSD

platform features are inherently heavy towards a graphical user

interface (GUI) in a drag and drop environment. As such, any

customization of such features that are not directly supported

by the LCSD platforms becomes challenging.

RQ2. How are the topics distributed across the LCSD life
cycle phases? Our findings from RQ1 show the unique nature

46

2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)

978-1-7281-8710-5/21/$31.00 ©2021 IEEE
DOI 10.1109/MSR52588.2021.00018

20
21

 IE
EE

/A
C

M
 1

8t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

in
in

g
So

ftw
ar

e
R

ep
os

ito
rie

s (
M

SR
) |

 9
78

-1
-7

28
1-

87
10

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

SR
52

58
8.

20
21

.0
00

18

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

of challenges LCSD developers face, like customization issues.

Given the considerable attention towards LCSD support by

software vendors/platforms, the success of the platforms/SDKs

can benefit from their effective adoption into the various stages

of a software development life cycle (SDLC). For example, if

testing of LCSD application cannot be done properly, it is

difficult to develop a reliable large-scale LCSD application.

We, therefore, need to understand whether and how LCSD

developers are discussing the adoption of tools and techniques

in LCSD topic across different SDLC phases. We randomly

sampled 900 questions from our dataset and manually ana-

lyzed the types of LCSD challenges developers discussed in

the questions. For each question, we label the SDLC phase

for which the developer noted the challenge. We found that

more than 85% of the questions revolved around development

issues, and it is more or less consistent across all the four topic

categories. We also find that testing can be challenging for

LCSD applications due to the graphical nature of the SDKs,

which can be hard to debug.

RQ3. What LCSD topics are the most difficult to answer?
Our findings from the above two research questions show

that LCSD developers face challenges more unique to LCSD

platforms (e.g., Customization topics) as well as similar to

other domains (e.g., Database topics). Therefore, it can be

useful to learn what topics are more difficult to get the right

answer to and whether the popularity of the topics can suffer

due to the observed difficulty. We compute a suite of popularity

and difficulty metrics for each topic, like the view count

and the percentage of questions without an accepted answer.

We find that questions related to the topic “Dynamic Event

Handling” from the Customization topic category are the most

difficult (to get an accepted answer) but also the most popular.

To the best of our knowledge, ours is the first empirical
study of LCSD and platforms on developer discussions.

The findings would help the research community with a better

focus on the specific LCSD areas. The practitioners can be

prepared for difficult areas. Relevant organizations will be

able to design more effective and usable tools for LCSD,

increasing their usability. All stakeholders can work together

for improved documentation support. The LCSD vendors can

support increased customization of the LCSD middleware and

UI to make the provided features more usable.

Replication Package: The code and data are shared in https:

//github.com/disa-lab/LowCodeEmpiricalMSR2021

II. BACKGROUND

What is an Low-code Application? To cater to the demand

of the competitive market, business organizations often need

to quickly develop and deliver customer-facing applications.

LCSD platform allows the quick translation of the business

requirement into a usable software application. It also enables

citizen developers of varying levels of software development

experience to develop applications using visual tools to design

the user interface in a drag-and-drop manner and deploy them

easily [32]. LCSD is inspired by the model-driven software

Fig. 1: Agile methodologies in traditional vs LCSD development

principle where abstract representations of the knowledge

and activities drive the development, rather than focusing on

algorithmic computation [48]. LCSD platforms aim to abstract

away the complexity of testing, deployment, and maintenance

that we observe in traditional software development. Some of

the most popular low-code platforms are Appian [4], Google

App Maker [21], Microsoft Powerapps [39], and Salesforce

Lightning [49].

Development Phases of an LCSD Application. A typical

LCSD application can be built in two ways [48]: 1) “UI to

Data Design”, where developers create UI and then connect

the UI to necessary data sources, or 2) “Data to UI” where

the design of the data model is followed by the design of the

user interfaces. In both approaches, application logic is imple-

mented, and then third party services and APIs are integrated.

APIs are interfaces to reusable software libraries [44]. A major

motivation behind LCSD is to build applications, get reviews

from the users, and incorporate those changes quickly [60].

As such, the agile development methodology [12] and LCSD

can go hand in hand because the fundamental principle and

objective are customer satisfaction and continuous incremental

delivery. The inner circle of Figure 1 shows the important

development phases of an LCSD application, as outlined

in [48]. The outer circle of Figure 1 shows the phases in a

traditional agile software development environment. As LCSD

platforms take care of many of the application development

challenges, some of the agile application development phases

have shorter time/execution spans in LCSD compared to

traditional software development.

III. STUDY DATA COLLECTION AND TOPIC MODELING

In this Section, we discuss our data collection process to

find LCSD related posts (Section III-A). We then discuss the

details of the topic modeling (Section III-B).

47

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

A. Data Collection

We collect LCSD related SO posts in three steps: (1) Down-

load SO data dump, (2) Identify LCSD related tag list, and

(3) Extract LCSD related posts from the data dump based on

our selected tag list. We describe the steps below.

Step 1: Download SO data dump. We downloaded SO data

dump [18] of June 2020. We used the contents of Post.xml file,

which contained information about each post like the post’s

unique ID, type (Question or Answer), title, body, associated

tags, creation date, view-count, etc. Our data dump included

posts from July 2008 to May 2020 and contained around

58,544,636 posts. Out of them, 33.4% are questions, 66.6%

are answers, and 17.4% questions had accepted answers.

Step 2: Identify low-code tags. We need to identify the tags

that are related to LCSD in order to extract low-code related

posts from SO discussions. To find relevant tags, we followed

a similar procedure used in prior work [1, 2, 59, 30]. At Step

1, we identify the initial low-code related tags and call them

Tinit. At Step 2, we finalize our low-code tag list following

related work [7, 62]. Our final tag list T f inal contains 19 tags

from the top nine LCDPs. We discuss each step in details

below.

(1) Identifying Initial low-code tags. The SO posts do not

have tags like “low-code” or “lowcode”. Instead, we find

that low-code developers use a LCSD platform name as a

tag, e.g., “appmaker” for Google Appmaker [21]. Hence,

to find relevant tags, first we compile a list of top LCSD

platforms by analysing a list of platforms that are consid-

ered as the market leaders in Gartner [57], Forrester [47],

related research work [48], and other online resources like PC

magazine [37]. We find nine LCSD platforms are consistently

mentioned in the above resources: Zoho Creator [63], Google

App Maker [21], Salesforce Lightning [49], Quickbase [40],

Outsystems [40], Mendix [34], Vinyl [58], Appian [4], and

Microsoft Powerapps [39]. We thus focus on the discussions

of the above nine LCSD platforms in SO. We find one tag per

LCSD platform as the name of the platform (e.g., “salesforce-

lightning”). However, upon close inspection of the tags in

SO, we found that developers used more than one tag for

some of the nine LCSD platforms. For example, “Microsoft

Powerapps” has multiple tags (e.g., “powerapps”, “powerapps-

formula”, “powerapps-canvas”). At the end of both quantitative

analysis and manual validation by four authors, we found a

total of 16 tags for the nine LCSD platforms. We refer to these

16 tags as Tinit.

(2) Finalizing low-code related tags. Intuitively, there might

be more variations to tags of nine LCSD platforms other

than those in Tinit. We use heuristics from previous related

works [7, 62] to find other relevant tags. First, we denote

our entire SO dump data as Qall. Second, we extract all the

questions Q that contain any tag from Tinit. Third, we create a

candidate tag list Tcandidate using all the tags found in questions

Q. Fourth, we select significantly relevant tags from Tcandidate

for our LCSD discussions. Following related works [7, 62], we

compute significance and relevance for each tag t in Tcandidate

with respect to Q (our extracted questions that has Tinit tag)

and Qall (i.e., our data dump) as follows,

(S igni f icance) S tag =
o f ques. with the tag t in Q
o f ques. with the tag t in Qall

(Relevance) Rtag =
o f questions with tag t in Q

o f questions in Q

A tag t is significantly relevant to LCSD if the S tag and Rtag

are higher than a threshold value. We experimented with a

wide range of values of S tag and Rtag. We found relevant tag

set for LCSD for S tag = 0.2 and Rtag = 0.005 . These values

are consistent with related work [7, 2]. The final tag list T f inal

contains 19 significantly relevant tags.

Step 3: Extracting low-code related posts. An SO question

can have at most five tags, and we consider a question as

low-code related question if at least one of its tag is in

our chosen tag list T f inal. Based on our T f inal tag set, we

found a total of 7,302 posts from our data dump. There were

51.3% Questions (i.e., 3,747) and 48.7% Answers (i.e., 3,555)

and among them 16.9% Questions (i.e., 1,236) had accepted

answers. SO has a score-based system (upvote and downvote)

to ensure the questions are in proper language with necessary

information (code samples and error messages), not repeated

or off-topic. Here is an example for a question with score

“-4” where a practitioner is making an API related query in

Powerapps(Q61147923)1 platform. However, it is not clear what

the practitioner is asking as the question is poorly written and

without any clear example. In order to ensure good quality

discussions, we excluded questions that had a negative score

which resulted in 6,982 posts containing 51.5% Questions (i.e.,

3,597) and 48.5% Answers (i.e., 3,385). Following previous

research [7, 46, 10], we excluded unaccepted answers and only

considered accepted answers for our dataset. Hence, our final

dataset B contained 4,785 posts containing 3,597 non-negative

scored questions and 1,188 accepted answers.

B. Topic Modeling

We produce LCSD topics from our extracted posts in three

steps: (1) Preprocess the posts, (2) Find optimal number of

topics, and (3) Generate topics. We discuss the steps below.

Step 1. Preprocess the posts. For each post text, we remove

noise following related works [1, 7, 10]. First, we remove the

code snippets from the body, which is inside <code></code>
tag, HTML tags such as (<p></p>, <a>,
etc), and URLs. Then we remove the stop words such as “the”,

“is”, “are”, punctuation marks, numbers, non-alphabetical

characters using the stop word list from MALLET [33],

NLTK [31], and our custom low-code specific (i.e., LCSD

platform names) stop word list. After this, we use porter

stemmer [41] to get the stemmed representations of the words

e.g., “wait”, “waits”, “waiting”, and “waited” - all of which

are stemmed to base form “wait”.

1Qi and Ai denote a question Q or answer A in SO with an ID i

48

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

Step 2. Finding the optimal number of topics. After the

prepossessing, we use Latent Dirichlet Allocation [13] and the

MALLET tool [33] to find out the LCSD related topics in SO

discussions. We follow similar studies in Software engineering

research using topic modeling [5, 6, 62, 7, 1]. Our goal is to

find the optimal number of topics K for our dataset B so that

the coherence score, i.e., encapsulation of underlying topics, is

high. We use Gensim package [43] to determine the coherence

score following previous works [56, 45]. We experiment with

different values of K that range from {5, 6, 7, .., 29, 30}
and for each value, we run MALLET LDA on our dataset

for 1000 iterations [7]. Then we observe how the coherence

score is changing with respect to K. We pick the topic model

with the highest coherence score. Choosing the right value

of K is important because, for smaller values of K, multiple

real-world concepts merge, and for a large value of K, a topic

breaks down. For example, in our result, the highest coherence

score 0.50 for K = 7 and K = 13. We choose K = 13 as it

captures our underlying topics better. For K = 7, we find that

it merges the topics “Dynamic Event Handling”, “Dynamic

Content Display”, and “Dynamic Form Controller”. MALLET

also uses two hyper-parameters, α and β, to distribute words

and posts across the topics. Following the previous works [7,

2, 8, 46], we use the standard values 50/K and 0.01 for hyper-

parameters α and β in our experiment.

Step 3. Generating topics. Topic modeling is a method

of extracting a set of topics by analysing a collection of

documents without any predefined taxonomy. Each document

has a probability distribution of topics, and every topic has

a probability distribution of a set of related words [10].

We produced 13 topics using the above LDA configuration

on our dataset B. Each topic model offers a list of top N
words and a list of M posts associated with the topic. In

our settings, a topic consists of 30 most frequently co-related

words, which represents a concept. Each post had a correlation

score between 0 to 1, and following the previous work [59],

we assign a document with a topic that it correlates most.

IV. EMPIRICAL STUDY

We answer three research questions by analyzing LCSD

discussions in SO. The RQ1 aims to understand the types of

topics discussed in SO about LCSD (Section IV-A). The RQ2

aims to understand how each topic is discussed across different

stages of low-code SDLC (software development life cycle)

(Section IV-B). The RQ3 offers insight into the challenges of

LCSD developers across the observed LCSD topics based on

the difficulty of getting answers (Section IV-C).

A. What types of topics are discussed about LCSD? (RQ1)

1) Approach: We get 13 low-code related topics from our

LDA topic modeling, as discussed in Section III. We use

card sorting [19] to label these topics following previous

works [7, 2, 62, 46, 1]. In open card sorting, there is no

predefined list of labels. To label a topic, we used the top

30 words for the topic and a random sample of at least 20

questions that are assigned to the topic. Four of the authors

Third-Party
Integration

(17%Q 2T)

Customization
UI or Service (40%Q 5T)

Platform
Adoption (22%Q 3T)

Database
Management

(22%Q 3T)

Fig. 2: Distribution of questions (Q) and topics (T) per topic category

Fig. 3: Distribution of questions by low-code Topics (C = Customiza-
tion Category, I = Integration, P = Platform Adoption, D = Database)

participated in the labelling process. Each author assigns a

label for each topic and discusses with each other until there is

an agreement. The authors reached an agreement after around

15 iterations of meetings over Skype and email and labeled

the 13 topics from the LDA output discussed in Section II.

After the labeling of the topics, we grouped them into higher

categories. For example, UI Adaptation and Dynamic Form

Controller are related to UI design, and so we group them

into a group named UI. In the same way, Dynamic Event

Handling, Dynamic Content Display, and Dynamic Content

Binding topics are related to the middleware feature of low-

code development platforms, and so we put these three topics

into Middleware sub-category. We repeat this process until we

can not find any more higher-level group. For example, the

above mentioned two categories UI and Middleware belong

to the application customization task where the developers

customize the UI or the business logic of the application

according to their need. Hence, we put them under a high-

level category named Customization. Similarly, we put Access

Control & Security into Configuration sub-category. Then we

put Configuration sub-category and Client Server Comm & IO

topic under Platform Adaptation high-level category.

2) Results: We find 13 LCSD topics that we group into four

high-level categories: Customization, Platform Adoption,

49

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

Customizatin
39.73%

UI 14.82%

Middleware 24.91%

Dynamic Event
Handling 9.26%

Dynamic Content
Display 8.7%

Dynamic Content
Binding 6.95%

Platform
Adaptation

21.9%

Configuration 14.9%

Cloud and On-Prem
Conf 6.31%

Access Control &
Security 8.59%

Database
Management

21.52%

SQL CRUD 8.03%

Data Storage &
Migration 6.98%

Entity Relationship
Mgmt 6.51%

Third-Party
Integration

16.76%

Lo
w

-C
od

e
So

ft
w

ar
e

To
pi

cs
 w

ith
 C

at
eg

or
ie

s
an

d
Su

bc
at

eg
or

ie
s Dynamic Form

Controller 7.56%

UI Adaptation 7.26%

Client Server Comm
& IO 7%

External Web Req
Processing 10.37%

External API & Email
Config 6.39%

Fig. 4: Low-code topics categories and sub-categories

Database Management, and Third-Party Integration. Fig-

ure 2 shows the distribution of questions and topics among the

four high-level categories. The Customization category covers

the highest percentage of questions and number of topics (40%

questions and five topics), followed by Platform Adoption
(22% questions and three topics), Database Management (33%

questions and three topics), and Integration (17% questions

and two topics). Figure 3 sorts the 13 topics based on number

of questions. The “External Web Req Processing topic” covers

the most questions regarding queries and discussions related

to the integration of third party services/APIs (10.4%). The

“Dynamic Event Handling” has the second most questions

(9.3%) related to the implementation of business logic.

In Figure 4, we group the 13 topics into four high-level

categories. The categories are sorted according to the number

of questions belonging to them. For example, the topmost cat-

egory Customization has the most number of questions under

them. Each category may consist of some sub-categories. For

example, Customization category contains two sub-categories:

(1) Middleware, and (2) UI . Each sub-category contains

one or more topics. For example, Middleware sub-category

consists of three topics: (1) Dynamic Event Handling, (2) Dy-

namic Content Display, and (3) Dynamic Content Binding.

Each sub-category and topic are organized according to their

distribution of questions. For example, under Customization

(40%) category, Middleware (25%) is followed by UI (15%)

sub-category. In the same way, “Dynamic Event Handling”

(9.3%) topic is followed by “Dynamic Content Display”

(8.7%) topic based on their question distribution.

• Customization is the largest category, with 40% of the SO

questions and five topics. It contains discussions about busi-

ness logic implementation, input and form validation, linking

the UI to the backend storage via dynamic content binding, a

drop-down menu with predefined value, formatting date and

time, drop-down widgets, etc. It contains two sub-categories of

topics: (1) Middleware sub-category covers discussions on the

middlewares that provide support for system integration, the

connection between UI and storage layer, etc., and (2) UI sub-

category contains discussions on drag-and-drop UI and form

design and also customization of UI components.

(i) Middleware (25% questions) sub-category contains

three topics: (1) Dynamic Event Handling (9.26%) has discus-

sions about handling user interaction events, accessing input

value after form submission (Q43096166), and rendering chart in

the canvas(Q56154215). (2) Dynamic Content Display (8.70%)
is about dynamically displaying items on the page (Q53648077),

displaying content based on previous action, and creating

and accessing gallery from multiple data sources (Q51764889).

(3) Dynamic Content Binding (6.95%) is about updating views

when some other values get changed (Q59932262) and building

process based on some values on the form (Q61282976).

(ii) UI (15% questions) sub-category contains two topics:

(1) Dynamic Form Controller (7.56%) contains discussions re-

lated to the design of forms with predefined values and the im-

plementation of multi-select and customized drop-down values

(Q44013975), adding event-listeners to text widget (Q46038130),

etc. (2) UI Adaptation (7.26%) is about designing and cus-

tomizing the user interface, resizing screen, etc.(Q34515865).

• Platform Adoption is the second-largest category, with 22%

of the questions. It contains discussions about generic query

on LCSD platform features and support, role management,

SDLC management tools (e.g., scrum, agile), cloud setup and

configuration, deployment issues, etc. The category has three

topics. The topic, Client Server Comm & IO (7.09%), contains

discussions on client-server architecture (Q54900592), debugging

server-side scripts (Q55283256), and general debugging queries

on error messages or unexpected output (Q50936643). The other

two topics are grouped under Configuration sub-category.

(i) Configuration (15% questions) contains discussions on

LCSD platform configuration on access control and cloud-

based setup. There are two topics: (1) Access Control & Secu-
rity (8.59%) is about discussion on role-based access control

to tasks (Q51431318), configuration of existing authentication

mechanism (Azure Active Directory configuration) (Q61734680).

(2) Cloud and On-Prem Conf (6.31%) contains discussion on

the proper configuration parameters and guidelines to connect

to the cloud/on-prem databases (Q55207558 and Q45740520).

• Database is tied to the second biggest category, with 22% of

the questions. It contains discussions about database connec-

tion, SQL CRUD operations, import/export existing data, etc.

There are three topics: (1) SQL CRUD (8.03%) contains dis-

50

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

cussions on SQL query (Q49051500, Q59852901) and table joining

(Q37707699), (2) Data Storage & Migration (6.98%) discusses

the upload and storing of files on the server (Q49666940), moving

files from one platform to another (Q55726281), conversion of

large CSV files to excel sheet (Q50977178), etc., (3) Entity
Relationship Management (6.51%) contains discussion on

relational database design (Q51881224) and platform support-

/limitations on relational database (Q58935331).

• Integration is the smallest category, with 17% of the ques-

tions and two topics. It contains discussions about email server

configuration, integration of external services, OAuth, fetching

and parsing data, etc. It contains two topics: (1) External
Web Req Processing (10.37%) contains posts regarding API

integration, parsing and debugging the responses of REST

APIs (Q21314917), and OAuth (Q56873258), some general query

on networking protocols such as HTTP, REST API (Q48628269),

etc., (2) External API & Email Config (6.39%) is about

configuration, sending or forwarding emails (Q34085695), con-

figuration error (Q31501424), how to use a generic programming

language to send an email (Q36341976), creating managing

calendar events (Q46738962), etc.

Summary of RQ1. We found 13 topics in our SO dataset

relevant to low-code software development. The topics

belong to four categories: Customization, Platform

Adoption, Database, and Integration. Customization

category has the most number of questions, followed by

Platform Adoption, Database, and Integration. Out of the

topics, “External Web Request Processing” topic under the

Integration category constitutes the highest number of

questions (10.4%), followed by the topic “Dynamic Event

Handling” (9.3%) under the Customization category.

B. How are the topics distributed across the LCSD life cycle
phases? (RQ2)

1) Approach: Agile software development methodol-

ogy [12] has six SDLC phases: (1) Requirement Analysis

& Planning, (2) Application Design, (3) Implementation,

(4) Testing, (5) Deployment, and (6) Maintenance. Our final

dataset B contained 3,597 questions. We needed at least 347

questions to produce a statistically significant sample, with

a 95% confidence level and 5 confidence interval. As noted

in Fig. 5, some phases have a low number of questions.

Thus we wanted to find more examples of those phrases in

our sample. As such, we analyzed 900 randomly sampled

questions. The labelling of each question to determine the

precise SDLC phases was conducted by several co-authors

in joint discussion sessions spanning over 80 person-hours.

Eventually, we manually labelled 916 questions, out of which

16 were considered invalid because they did not have any

specific LCSD discussions. For example, a new practitioner

is tasked with finding the right LCSD platform during the

planning stage of his/her LCSD application. The practitioner

queries, “Are there any serious pitfalls to Outsystems Agile

Platform?” (Q3016015). We thus assign the SDLC phase for it as

“Requirement Analysis & Planning”. Another question asks,

Testing1.4%
Deployment 2.5%Implementation 87%

Req Analysis 1.5%
Design 4.5%
Maintenance 2.6%

Fig. 5: Distribution of questions (Q) per SDLC phase

TABLE I: Distribution (frequency) of LCSD topics per SDLC phase.
Each colored bar denotes a phase (Black = Requirement Analysis &
Planning, Green = Application Design, Magenta = Implementation,
Red = Testing, Blue = Deployment, Orange = Maintenance)

Topics Development Phases Noted in #Questions

Customization (351, 39%)
Dynamic Event Handling 73 7 1
Dynamic Content Display 2 78 1
Dynamic Form Controller 2 67
UI Adaptation 1 59 1 1 2
Dynamic Content Binding 5 49 2

Platform Adoption (189, 21%)
Access Control & Security 4 3 42 2 14 12
Client Server Comm & IO 54 2 1
Cloud and On-Prem Conf 8 12 28 1 4 2

Database (214, 23.7%)
SQL CRUD 1 4 74
Data Storage & Migration 3 63 2
Entity Relationship Mngmt 1 5 58 3

Integration (145, 16.1%)
Ext Web Req Processing 3 99
Ext API & Email Config 41 1 1

“Google App Maker app not working after deploy” (Q42506938).

We label the SDLC phase as “Deployment”.

2) Results: Figure 5 shows that the Implementation phase

is found in 87% of the 900 questions we studied, followed by

Design (4.5%), Maintenance (2.6%) and Deployment (2.4%)

phases. This is not surprising, given that SO is a technical

Q&A site and developers use the forum to find solutions to

their technical problems. Table I shows the distribution of

our 13 LCSD topics over six low-code SDLC phase based

on our analysis of 900 SO questions. Besides the dominance

of development phase related questions across all topics, we

find the presence of other phases (e.g., testing, deployment)

in customization and platform adoption topics.

Requirement Analysis & Planning (14, 1.5%). Require-

ment analysis is the process of developing software according

to the expectation of the users. During planning, the feasi-

bility, timeline, dependability, potential complexity/risks are

analyzed and planned by paying attention to the operational

aspects. The LCSD platforms usually provide requirement

management tools that allow developers to collect data, cus-

tomize checklists, import user stories into sprint plans. At

this phase, the developers usually face enquiries about cost,

learning curve, LCSD platform’s support for faster application

development, deployment, and maintenance features to choose

the right platform for their business need. For example, in

this popular question, a new practitioner is asking for some

drawbacks on some potential pitfalls for a particular LCSD

platform, e.g., “Are there any serious pitfalls to Outsystems

Agile Platform?” (Q3016015). A developer from that platform

51

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

provider suggests using the platform to build an application

and decide for himself as it is hard to define what someone

might consider a pitfall.

Application Design (40, 4.5%). In this phase, the design

specification is made based on the requirements of the appli-

cation. All the key stakeholders review and approve this con-

sidering application architecture, modularity, and extensibility.

The LCSD developers face challenges regarding data storage

design, drag and drop UI design, using on-prem data-sources

with the LCSD platform (e.g., “Can AppMaker be used with

SQL Server” (Q55220499)), migrating existing data to LCSD

platform (Q46421271), designing a responsive web page (e.g.,

“Incorporating responsive design in App Maker” (Q52744026)).

Implementation (785, 87.3%). At this phase, actual ap-

plication development begins. LCSD developers face a wide

range of challenges when trying to customize the UI, im-

plement business logic, integrate third-party modules, debug

and test the implemented functionalities, read the incomplete

or incorrect documentation, etc. Developers ask application

customization and UI customization questions like “How do

I change timezone in AppMaker Environment?” (Q47731051),

drop-down menu customization (e.g., “powerapps: populate

drop down list from another datasource” (Q40159662)). There

are many queries (17%) regarding external services or API

integration. Many of these questions are relevant to a task-

based tutorial on how to use a REST API and process its

response (e.g., “How to upload files and attachments to the

subject record using REST API?” (Q61143493)). The root cause

of many of these issues is incomplete or incorrect documen-

tation. For example, in Q46241015, a practitioner is querying

about the integration of Zoho CRM and says that s/he does not

understand the sample code. In Q34510911, a practitioner asks

for a sample code to convert a web page to a PDF. Clearly,

the documentation is not sufficient for a smooth transition for

entry-level practitioners.

Testing (14, 1.5%). The testing process of LCSD varies

from traditional software. It usually takes less testing in LCSD

platforms because the platform management team test and

monitors the modules provided. Unit testing carries less im-

portance than tradition development because the components

are already unit tested, and developers usually integrate those

using drag-and-drop fashion. Many platforms provide custom

unit testing features for the application logic code added by

the developers. The platform providers recommend running a

security audit to check if there is a potential data exposure.

Most of the issues faced in this phase are related to browser

compatibility, lack of proper documentation to run automated

tests, test coverage, issues using the third party functional

testing tools like Selenium (Q61210424), etc. Practitioners make

general queries about running tests on low-code platforms

(Q46669690) and errors while running test (Q47254010).

Deployment (22, 2.5%). LCSD platforms aim to make

the deployment and maintenance phase smooth. Many plat-

forms provide Application Life-Cycle Management tools to

develop, debug, deploy, and maintain the staging and produc-

tion server. However, LCSD developers still face challenges

regarding deployment configuration issues (Q46369742), version

control, DNS configuration, performance issues, accessibility

issues (i.e., sharing public URL of the application (Q44136328,

Q53884162)), DNS configuration, etc. For example, in this dis-

cussion, a developer was having trouble accessing the app after

deployment (e.g., “Google App Maker app not working after

deploy” (Q42506938)). In the accepted answer, a community

member provides a detailed description to achieve that and

points out the lack of Official Documentation for such a crucial

task. There are a few queries about deploying application

with custom URL, i.e., the domain name (e.g., “How to make

friendly custom URL for deployed app” (Q47194231)). In this

case, it was difficult because the platform did not have native

support.

Maintenance (24, 2.6%). At this stage, the application is

released and needs maintenance support. The users sometimes

find bugs that were not caught before and sometimes want

new features that may spawn a new software development life

cycle in agile or incremental development methodology. In this

phase, developers face challenges regarding bugs in a low-

code platform and difficulties in using different application

maintenance features provided by the platform, such as event

monitoring, collaboration, application design reusability, etc.

Different LCSD platforms provide features on developers’ role

management, dashboard, and event monitoring. For example,

in this question, a practitioner queries about the feasibility of

role-based access control in an LCSD platform: “PowerApps

: Implementing Role Based Security In Your PowerApps

App” (Q52762374). LCSD developers also find it difficult to

determine/update versions of LCSD platforms (Q45209796).

Summary of RQ2. We randomly sampled 900 questions

from our dataset and manually examined the SDLC phase

of the questions. We found an overwhelming majority of

(85%) implementation phase-related questions in SO.

Non-coding questions are generally discouraged in SO, so

we found very few questions related to other phases (e.g.,

requirement analysis, deployment, etc.). We also find that

LCSD developers find testing to be challenging for LCSD

application due to the graphical nature of the SDKs, which

can be hard to debug.

C. What LCSD topics are the most difficult to answer? (RQ3)

1) Approach: For each topic, we compute the difficulty of

getting answers under a topic using three metrics: (1) Per-

centage of questions without any answer at all, (2) Percentage

of questions without an accepted answer, (3) Average median

time needed to get an accepted answer. In the same way we

use the following four popularity metrics: (1) Average number

of views, (2) Average number of favourites, (3) Average score,

and (4) Average number of answers. Then we aim to determine

the correlation between the difficulty and popularity of the

topics. The first two difficulty metrics and the first three

popularity metrics are used in several previous studies [7, 1, 2].

We use the Kendall Tau correlation measure [25] to find the

correlation between topic popularity and topic difficulty. SO

52

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Low-code software development topics, their popularity, and difficulty

Topic Category Popularity score Difficulty score

Avg view Avg fav. Avg score Avg #ans W/O any ans. W/O acc. ans. Med. Hrs acc.

Dynamic Event Handling Customization 833 1.23 0.54 0.86 37.2% 75.9% 9.8
Ext. Web Req Processing Integration 785 1.24 0.62 1.04 23.3% 68.1% 15.7
Ext. API & Email Config Integration 764 1.23 0.83 0.91 34.3% 70.4% 12.7
Dynamic Content Display Customization 722 0.86 0.48 0.99 17.6% 65.2% 14.8
Cloud and On-Prem Conf Adoption 578 1.18 0.85 1.01 23.8% 66.5% 16.8
Dynamic Form Controller Customization 566 0.85 0.45 1.07 15.1% 57.4% 4.2
UI Adaptation Customization 536 0.95 0.46 0.88 30.3% 68.2% 6.1
Dynamic Content Binding Customization 507 1.16 0.36 0.94 22.4% 67.2% 24.9
Entity Relationship Mngmt Database 485 1.09 0.48 0.93 29.5% 62.4% 6.9
Data Storage & Migration Database 472 1.07 0.60 0.89 25.1% 69.3% 14.8
Client Server Comm & IO Adoption 408 1.11 0.54 0.86 31.8% 67.8% 12.7
SQL CRUD Database 359 1.04 0.45 0.92 22.1% 60.2% 7.6
Access Control & Security Adoption 301 0.97 0.49 0.93 26.2% 69.9% 12.6

Average 572 1.1 0.5 0.9 26% 67% 12.3

TABLE III: Correlation between the topic popularity and difficulty

coefficient/p-value View Favorites Score

% without acc. ans. 0.154/0.51 0.348/0.10 0.379/0.08
Hrs to acc. ans. 0.077/0.77 0.400/0.06 0.431/0.04
% without any answer 0.077/0.77 0.374/0.08 0.275/0.20

does not provide the data across a time-series for all metrics

such as view count, score, etc. As such, our analysis offers as

of time insight.

2) Results: Table II shows the topic difficulty using the

three metrics, as noted above. These metrics allow us to un-

derstand the difficulty of getting a working solution [7, 1]. The

Dynamic Event Handling under Customization has the highest

average view count and the highest percentage of questions

(76%) without an accepted answer. Dynamic Content Binding
from the same category also has the highest median hours to

get an accepted answer. Many questions in this topic relate to

business logic customization in an LCSD platform, which is

not familiar to other developers. For example, Q51443599 asks,

“How to add more data an array of objects in a lightning

component?”. This question has been asked around two years

ago, viewed around 11K times and still active. It has three

answers, but none of them is marked as accepted. Whereas,

Dynamic Form Controller under Customization is the least

difficult topic concerning the percentage of the questions

without an accepted answer (57%) and median time (4.2

hours) to get a solution. It is because questions related to form

design and validation have good community support. The same

is also true for SQL CRUD, which has around 7.6 median

hours for accepted answers.

The External Web Req Processing under Integration has

the highest percentage of questions and the highest average

favourite count. The Cloud and On-Prem Conf under Platform
adoption have the highest average score. The discussions

are about setting and maintaining cloud configuration and

migrating on-prem data to the server in this topic. For example,

in Q44727285, a practitioner is asks “Migrate Salesforce data

from one org to another”, and in Q3016015, a new practitioner

is making a general low-code platform related query “Are

there any serious pitfalls to Outsystems Agile Platform?”. This

question has a very high score because lots of new low-code

platform developers have faced this issue. Access Control &
Security under Platform Adoption is the least popular topic in

terms of average view count. In this topic, the questions are

about deploying the application, its security and access control.

For example, in Q17886545, a practitioner says, “Can’t Connect

to SalesForce in C#”. He also explains there is a security token

error, and in the documentation, it is not mentioned how to

configure that. Many of these questions are not general, and

so it has a low average view-count.

Correlation between topic difficulty and popularity. In

Table III, we present nine correlation measures using three dif-

ficulty and popularity metrics from Table II. Our result shows

no statistically significant correlation between the popularity

and difficulty metrics since for eight out of nine correlation

values are > 0.05. Therefore, we cannot say that the least

popular topics are the most difficult ones and vice versa. For

example, Access Control & Security is one of the least popular

topics but considered among the most difficult topics (Table

II). However, this observation does not hold for Dynamic

Event Handling, which is the most popular and among the

most difficult topics.

Summary of RQ3. We compute seven popularity and

difficulty metrics for each topic using metrics such as view

count, percentage of questions without an accepted answer,

etc. We find that questions related to the topic “Dynamic

Event Handling” from the customization category are the

most difficult (to get an accepted answer) but also the most

popular (average view count). Overall, we do not see any

significant correlation (positive/negative) between topic

difficulty and popularity metrics.

V. DISCUSSIONS

In this section, we discuss the evolution of low-code and

LCSD related discussions with respect to different topics. Then

we discuss the implications of our findings.

53

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Low-code topic category evolution over time.

Fig. 7: Low-code Platforms evolution over time

A. Evolution of LCSD topics

We measure the growth of our four high-level topic cate-

gories over time to better understand the evolution of LCSD.

We measure the absolute growth, i.e., the total number of

questions in a category over time. Figure 6 shows that all four

of our topic categories are increasing monotonically. This trend

indicates that the LCSD approach is gaining more community

attention over time, especially after 2016.

We further analyze two sudden swings in the number of

questions. First, we find an increase of questions in every

category after mid-2016, especially for questions about the

Customization category. Google released App Maker [21] for

public use in 2016, which introduced many discussions on

LCSD customization. Figure 7 confirms it and shows a spike

in questions about Google App Maker during that time. The

second case is that at the beginning of 2020, there is a sharp

decline in SO discussions. In Jan 2020, Google announced

that they would no longer release new features for Google

App Maker and discontinue it by 2021 [22]. It created unrest

among the developer community as they were trying to verify

this information (Q59947680) and to explore alternatives (e.g.,

Q59985750). Figure 7 also shows the sudden drop in the number

of questions asked about Google App Maker starting Jan 2020.

Adoption

Customization

Database Integration

0

100

200

300

400

500

600

700

800

900

63 64 65 66 67 68 69 70 71

To
pi
c
Po

pu
la
rit
y
(a
ve

ra
ge

vi
ew

co
un

t)

Difficulty of the topic (% of questions without accepted answer)

Fig. 8: Low-code topic categories popularity vs. difficulty

B. Implications of Findings

This study can help the low-code community to focus on

the pressing issues on the LCSD paradigm. We discuss the

implications of our study findings by stakeholders below.

LCSD Platform Providers. In order to better understand

the issues of LCSD, we present a bubble chart 8 that presents

the positions of low-code categories in terms of popularity vs.

difficulty. In this study, we use the average number of view-

count and percentage of questions without accepted answers

as a proxy for the topic category popularity and difficulty,

respectively [1]. The size of the bubble depends on the number

of questions for that particular topic category. Figure 8 shows

that Integration is the most popular as well as most difficult

topic category. On the other hand, Database remains the least

difficult category due to the superior database support by

LCSD platforms. As shown in Figure 8, Customization is

the largest and prevalent low-code topic category. Many new

practitioners make queries regarding LCSD platforms, learning

resources, basic application and UI customization, and how

to get started with this new emerging technology. We find

that Documentation related queries are both very popular and

difficult. Our findings also suggest that many practitioners still

face challenges during testing and debugging. Consequently,

many of the questions on this topic remain unanswered. It

reveals that to ensure smooth adoption of the LCSD platform,

the platform providers should provide better and effective

documentation and provide learning resources to reduce entry-

level barriers and smooth out the learning curve.

LCSD Practitioners/Developers. LCSD abstractions and

the platform’s feature limitations sometimes make it very

difficult to customize and debug. Our finding shows that the

practitioners find third party service Integration and Platform
Feature category most difficult. It provides valuable insights

for project managers to manage resources better (i.e., human

resources and development time). LCSD platform enables

practitioners with diverse experience to contribute to the

development process even without a software development

background. However, our finding shows that practitioners

find debugging, application accessibility, and documentation

challenging. Hence, the practitioners should take the necessary

54

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

steps to understand the tradeoffs LCSD platforms’ features

deeply. The project manager should adopt specific strategies

to learn to customize, debug, and test the application.

LCSD Researchers & Educators. We find that the

LCSD paradigm’s challenges can be different from traditional

software development [48]. Researchers can focus on the most

popular and difficult topic category Integration and develop a

set of metrics to automatically detect documentation quality

on third-party service APIs. Simultaneously, researchers can

study how to provide better tools for practitioners to customize

the application. Security is an open research opportunity for

such platforms as a security vulnerability in such platforms

or frameworks could compromise millions of applications

and users [29]. Researchers can come up with better testing

approaches to ensure faster development and dependability.

Educators can also benefit from the results presented in Figure

8 to prioritize their focus on different topics such as Database,
Customization, and Third-party API Integration.

VI. THREATS TO VALIDITY

Internal validity threats relate to the authors’ bias while

conducting the analysis. We mitigate the bias in our manual

labeling of topics and LCSD phases by consulting the labels

among multiple authors. Four of the authors actively partici-

pated in the labelling process. The third author reviewed the

final labels and refined the labels by consulting with the first

author. Construct Validity threats relate to the errors that may

occur in data collection like, identifying relevant LCSD tags.

To mitigate this, we examine all the tags that we find in the

low-code related questions. Then we expanded our tag list

using state-of-art approach [7, 1, 2, 46]. Another potential

threat is the topic modeling technique, where we choose K
= 13 as the optimal number of topics for our dataset B. This

optimal number of topics have a direct impact on the output of

LDA. We experimented with different values of K following

related works [1, 7]. We used the coherence score and manual

examination to find K’s optimal that gives us the most relevant

and generalized low-code related topics. External Validity
threats relate to the generalizability of our findings. Our study

is based on data from developers’ discussion on SO. However,

there are other forums LCSD developers may use to discuss.

Nevertheless, we believe using SO’s data provides us with

generalizability because SO is a widely used Q&A platform

for developers. To ensure good quality discussion, we only

use posts with non-negative scores. However, we also believe

this study can be complemented by including discussions from

other forums, surveying and interviewing low-code developers.

VII. RELATED WORK

Research on low-code development. LCSD is a relatively

new technology, and there are only a few research works in

this domain. There is some research on how this emerging

technology can be used in different software applications [20]

or for automating business process in manufacturing [60].

Sipio et al. [17] present the benefits and future potential

of LCSD by sharing their experience of building a custom

recommendation system in the LCSD platform. Kourouklidis

et al. [27] discuss the low-code solution to monitor the

machine learning model’s performance. Sahay et al. survey

LCDP and compare different LCDPs based on their helpful

features and functionalities [48]. Khorram et al. [26] analyse

commercial LCSD platforms and present a list of features

and testing challenges. Ihirwe et al. [24] analyse 16 LCSD

platforms and identifies what IoT application-related features

and services each platform provides. All these research works

compare LCSD platforms and their support on the different

types of applications [3]. To the best of our knowledge, ours

is the first empirical study of LCSD and platforms based on

developer discussions.

Topic Modeling in Software Engineering. Our motivation

to use topic modeling to understand LCSD discussions stems

from existing research in software engineering that shows

that topics generated from textual contents can be a good

approximation of the underlying themes [15, 50, 52]. Topic

models are used recently to understand software logging [28]

and previously for diverse other tasks, such as concept and

feature location [16, 38], traceability linking (e.g., bug) [42,

6], to understand software and source code history evolu-

tion [23, 54, 53], to facilitate code search by categorizing

software [55], to refactor software code base [11], as well as to

explain software defect [14], and various software maintenance

tasks [51, 50]. The SO posts are subject to several studies on

various aspects of software development using topic modeling,

such as what developers are discussing in general [10] or about

a particular aspect, e.g., concurrency [2], big data [7], chatbot

development [1]. We are aware of no previous research on

understanding the LCSD discussions in SO.

VIII. CONCLUSIONS

LCSD is a new paradigm that enables the development of

software applications with minimal hand-coding using visual

programming. We present an empirical study that provides

insights into the types of topics low-code developers discuss

in Stack Overflow (SO). We find 13 low-code topics in our

dataset of 4.6K SO posts (question + accepted answers). The

posts are collected based on 19 SO tags belonging to the

popular nine LCSD platforms during our analysis. We catego-

rize them into four high-level groups, namely Customization,

Platform Adoption, Database, and Integration. Our findings

reveal that developers find the external API Integration topic

category the most challenging and the Database category least

difficult. Dynamic Event Handling is the most popular, as well

as the most challenging topic. We find a severe lack of good

tutorial based documentation that deters the smooth adaptation

of LCSD. We hope that all of these findings will help various

LCSD stakeholders (e.g., LCSD platforms, practitioners, SE

researchers) to take necessary actions to address the various

LCSD challenges. Since the growth indicates that this tech-

nology is likely to be widely adopted by various companies

for their internal and customer-facing applications, platform

providers should address the prevailing developers’ challenges.

55

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalka-
reem, and Emad Shihab. Challenges in chatbot development:
A study of stack overflow posts. In Proceedings of the
17th International Conference on Mining Software Reposito-
ries, MSR ’20, page 174–185, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450375177.
doi: 10.1145/3379597.3387472. URL https://doi.org/10.1145/
3379597.3387472.

[2] Syed Ahmed and Mehdi Bagherzadeh. What do concurrency
developers ask about? a large-scale study using stack overflow.
In Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM
’18, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450358231. doi: 10.1145/3239235.
3239524. URL https://doi.org/10.1145/3239235.3239524.

[3] Ana Nunes Alonso, João Abreu, David Nunes, André Vieira,
Luiz Santos, Tércio Soares, and José Pereira. Towards a poly-
glot data access layer for a low-code application development
platform. arXiv preprint arXiv:2004.13495, 2020.

[4] appian. Appian platform overview. Available: https://www.
appian.com/. [Online; accessed 5-January-2021].

[5] Rajkumar Arun, Venkatasubramaniyan Suresh, CE Veni Madha-
van, and MN Narasimha Murthy. On finding the natural number
of topics with latent dirichlet allocation: Some observations.
In Pacific-Asia conference on knowledge discovery and data
mining, pages 391–402. Springer, 2010.

[6] Hazeline U Asuncion, Arthur U Asuncion, and Richard N
Taylor. Software traceability with topic modeling. In 2010
ACM/IEEE 32nd International Conference on Software Engi-
neering, volume 1, pages 95–104. IEEE, 2010.

[7] Mehdi Bagherzadeh and Raffi Khatchadourian. Going big: A
large-scale study on what big data developers ask. In Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, pages 432–442, New
York, NY, USA, 2019. ACM.

[8] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Mining
questions asked by web developers. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages
112–121, 2014.

[9] Alan Bandeira, Carlos Alberto Medeiros, Matheus Paixao, and
Paulo Henrique Maia. We need to talk about microservices:
an analysis from the discussions on stackoverflow. In 2019
IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), pages 255–259. IEEE, 2019.

[10] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What
are developers talking about? an analysis of topics and trends
in stack overflow. Empirical Software Engineering, 19(3):619–
654, 2014.

[11] Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys
Poshyvanyk, and Andrea De Lucia. Methodbook: Recommend-
ing move method refactorings via relational topic models. IEEE
Transactions on Software Engineering, 40(7):671–694, 2014.

[12] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cock-
burn, Ward Cunningham, Martin Fowler, James Grenning, Jim
Highsmith, Andrew Hunt, Ron Jeffries, et al. Manifesto for
agile software development. 2001.

[13] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning Research, 3
(4-5):993–1022, 2003.

[14] Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan,
and Ahmed E. Hassan. Explaining software defects using
topic models. In 9th working conference on mining software
repositories, pages 189–198, 2012.

[15] Tse-Hsun (Peter) Chen, Stephen W. Thomas, and Ahmed E
Hassan. A survey on the use of topic models when mining

software repositories. Empirical Software Engineering, 21(5):
1843–1919, 2016.

[16] Brendan Cleary, Chris Exton, Jim Buckley, and Michael En-
glish. An empirical analysis of information retrieval based con-
cept location techniques in software comprehension. Empirical
Software Engineering, 14:93–130, 2009.

[17] Claudio Di Sipio, Davide Di Ruscio, and Phuong T Nguyen.
Democratizing the development of recommender systems by
means of low-code platforms. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems: Companion Proceedings,
pages 1–9, 2020.

[18] Stack Exchange. Stack exchange data dump . Available: https:
//archive.org/details/stackexchange, 2020. [Online; accessed 5-
January-2021].

[19] Sally Fincher and Josh Tenenberg. Making sense of card sorting
data. Expert Systems, 22(3):89–93, 2005.

[20] Meg Fryling. Low code app development. J. Comput. Sci. Coll.,
34(6):119, April 2019. ISSN 1937-4771.

[21] googleappmaker. Google App Maker platform overview.
Available: https://developers.google.com/appmaker. [Online;
accessed 5-January-2021].

[22] googledisc. Google App Maker will be shut down on January
19, 2021. https://workspaceupdates.googleblog.com/2020/01/
app-maker-update.html. [Online; accessed 5-January-2021].

[23] Jiajun Hu, Xiaobing Sun, David Lo, and Bin Li. Modeling the
evolution of development topics using dynamic topic models.
In IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering, pages 3–12, 2015.

[24] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi
Pierini, and Alfonso Pierantonio. Low-code engineering for
internet of things: A state of research. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings,
MODELS ’20, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450381352. doi: 10.
1145/3417990.3420208. URL https://doi.org/10.1145/3417990.
3420208.

[25] M. G. Kendall. A new measure of rank correlation. Biometrika,
30(1):81–93, 1938.

[26] Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé. Chal-
lenges & opportunities in low-code testing. In Proceedings
of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Pro-
ceedings, MODELS ’20, New York, NY, USA, 2020. As-
sociation for Computing Machinery. ISBN 9781450381352.
doi: 10.1145/3417990.3420204. URL https://doi.org/10.1145/
3417990.3420204.

[27] Panagiotis Kourouklidis, Dimitris Kolovos, Nicholas Matragkas,
and Joost Noppen. Towards a low-code solution for monitoring
machine learning model performance. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings,
pages 1–8, 2020.

[28] Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Ahmed E.
Hassan. Studying software logging using topic models. Empir-
ical Software Engineering, 23:2655–2694, 2018.

[29] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and
Yang Xiang. Software vulnerability detection using deep neural
networks: a survey. Proceedings of the IEEE, 108(10):1825–
1848, 2020.

[30] Mario Linares-Vásquez, Bogdan Dit, and Denys Poshyvanyk.
An exploratory analysis of mobile development issues using
stack overflow. In 2013 10th Working Conference on Mining
Software Repositories (MSR), pages 93–96. IEEE, 2013.

[31] Edward Loper and Steven Bird. Nltk: the natural language
toolkit. arXiv preprint cs/0205028, 2002.

56

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

[32] lowcodewiki. Low-code development platform . Available:
https://en.wikipedia.org/wiki/Low-code development platform.
[Online; accessed 5-January-2021].

[33] Andrew Kachites McCallum. Mallet: A machine learning for
language toolkit. http://mallet. cs. umass. edu, 2002.

[34] mendix. Mendix platform overview. Available: https://www.
mendix.com/. [Online; accessed 5-January-2021].

[35] Stack Overflow. Stack Overflow Questions. https://
stackoverflow.com/questions/, 2020. Last accessed on 14
November 2020.

[36] John Pane and Brad Myers. More Natural Programming
Languages and Environments, pages 31–50. Springer, 10 2006.
ISBN 978-1-4020-4220-1. doi: 10.1007/1-4020-5386-X 3.

[37] pcmag. The Best Low-Code Development Plat-
forms. Available: https://www.pcmag.com/picks/
the-best-low-code-development-platforms. [Online; accessed
5-January-2021].

[38] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus,
Giuliano Antoniol, and Václav T Rajlich. Feature location using
probabilistic ranking of methods based on execution scenarios
and information retrieval. IEEE Transactions on Software
Engineering, 33(6):420–432, 2007.

[39] powerapps. Microsoft power apps platform overview. Available:
https://powerapps.microsoft.com/en-us/. [Online; accessed 5-
January-2021].

[40] quickbase. Quickbase platform overview. Available: https:
//www.quickbase.com/product/product-overview. [Online; ac-
cessed 5-January-2021].

[41] C Ramasubramanian and R Ramya. Effective pre-processing
activities in text mining using improved porter’s stemming
algorithm. International Journal of Advanced Research in
Computer and Communication Engineering, 2(12):4536–4538,
2013.

[42] Shivani Rao and Avinash C Kak. Retrieval from software
libraries for bug localization: a comparative study of generic and
composite text models. In 8th Working Conference on Mining
Software Repositories, page 43–52, 2011.

[43] Radim Rehurek and Petr Sojka. Software framework for
topic modelling with large corpora. In In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frameworks.
Citeseer, 2010.

[44] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira
Mezini, and Tristan Ratchford. Automated API property infer-
ence techniques. IEEE Transactions on Software Engineering,
page 28, 2012.

[45] Michael Röder, Andreas Both, and Alexander Hinneburg. Ex-
ploring the space of topic coherence measures. In Proceedings
of the eighth ACM international conference on Web search and
data mining, pages 399–408, 2015.

[46] Christoffer Rosen and Emad Shihab. What are mobile devel-
opers asking about? a large scale study using stack overflow.
Empirical Software Engineering, 21(3):1192–1223, 2016.

[47] John R Rymer, Rob Koplowitz, and Salesforce Are Leaders. The
forrester wave(tm) low-code development platforms for ad&d
professionals, q1 2019. 2019.

[48] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and
Alfonso Pierantonio. Supporting the understanding and com-
parison of low-code development platforms. In 2020 46th

Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 171–178. IEEE, 2020.

[49] salesforce. Salesforce platform overview. Available: https:
//www.salesforce.com/in/?ir=1. [Online; accessed 5-January-
2021].

[50] Xiaobing Sun, Bin Li, Yun Li, and Ying Chen. What informa-
tion in software historical repositories do we need to support
software maintenance tasks? an approach based on topic model.
Computer and Information Science, pages 22–37, 2015.

[51] Xiaobing Sun, Bixin Li, Hareton Leung, Bin Li, and Yun Li.
Msr4sm: Using topic models to effectively mining software
repositories for software maintenance tasks. Information and
Software Technology, 66:671–694, 2015.

[52] Xiaobing Sun, Xiangyue Liu, Bin Li, Yucong Duan, Hui Yang,
and Jiajun Hu. Exploring topic models in software engineering
data analysis: A survey. In 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, pages 357–
362, 2016.

[53] Stephen W. Thomas, Bram Adams, Ahmed E Hassan, and
Dorothea Blostein. Modeling the evolution of topics in source
code histories. In 8th working conference on mining software
repositories, pages 173–182, 2011.

[54] Stephen W. Thomas, Bram Adams, Ahmed E Hassan, and
Dorothea Blostein. Studying software evolution using topic
models. Science of Computer Programming, 80(B):457–479,
2014.

[55] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. Using latent
dirichlet allocation for automatic categorization of software.
In 6th international working conference on mining software
repositories, pages 163–166, 2009.

[56] Gias Uddin and Foutse Khomh. Automatic summarization of
api reviews. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 159–170.
IEEE, 2017.

[57] P Vincent, K Lijima, Mark Driver, Jason Wong, and Yefim
Natis. Magic quadrant for enterprise low-code application
platforms. Retrieved December, 18:2019, 2019.

[58] vinyl. Vinyl platform overview. Available: https://zudy.com/.
[Online; accessed 5-January-2021].

[59] Zhiyuan Wan, Xin Xia, and Ahmed E Hassan. What is discussed
about blockchain? a case study on the use of balanced lda and
the reference architecture of a domain to capture online dis-
cussions about blockchain platforms across the stack exchange
communities. IEEE Transactions on Software Engineering,
2019.

[60] Robert Waszkowski. Low-code platform for automating busi-
ness processes in manufacturing. IFAC-PapersOnLine, 52:376–
381, 01 2019. doi: 10.1016/j.ifacol.2019.10.060.

[61] Jason Wong, Mark Driver, and Paul Vincent. Low-code devel-
opment technologies evaluation guide, 2019.

[62] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling
Sun. What security questions do developers ask? a large-scale
study of stack overflow posts. Journal of Computer Science and
Technology, 31(5):910–924, 2016.

[63] zohocreator. Zoho Creator platform overview. Available: https:
//www.zoho.com/creator/. [Online; accessed 5-January-2021].

57

Authorized licensed use limited to: University of Calgary. Downloaded on November 11,2022 at 20:01:58 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T12:35:29-0400
	Preflight Ticket Signature

